High-Resolution Genetic Mapping of Complex Traits from a Combined Analysis of F2 and Advanced Intercross Mice

Author:

Parker Clarissa C11,Carbonetto Peter21,Sokoloff Greta2,Park Yeonhee J2,Abney Mark2,Palmer Abraham A23

Affiliation:

1. Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont 05753

2. Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637

3. Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, Illinois 60637

Abstract

Abstract Genetic influences on anxiety disorders are well documented; however, the specific genes underlying these disorders remain largely unknown. To identify quantitative trait loci (QTL) for conditioned fear and open field behavior, we used an F2 intercross (n = 490) and a 34th-generation advanced intercross line (AIL) (n = 687) from the LG/J and SM/J inbred mouse strains. The F2 provided strong support for several QTL, but within wide chromosomal regions. The AIL yielded much narrower QTL, but the results were less statistically significant, despite the larger number of mice. Simultaneous analysis of the F2 and AIL provided strong support for QTL and within much narrower regions. We used a linear mixed-model approach, implemented in the program QTLRel, to correct for possible confounding due to familial relatedness. Because we recorded the full pedigree, we were able to empirically compare two ways of accounting for relatedness: using the pedigree to estimate kinship coefficients and using genetic marker estimates of “realized relatedness.” QTL mapping using the marker-based estimates yielded more support for QTL, but only when we excluded the chromosome being scanned from the marker-based relatedness estimates. We used a forward model selection procedure to assess evidence for multiple QTL on the same chromosome. Overall, we identified 12 significant loci for behaviors in the open field and 12 significant loci for conditioned fear behaviors. Our approach implements multiple advances to integrated analysis of F2 and AILs that provide both power and precision, while maintaining the advantages of using only two inbred strains to map QTL.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3