Affiliation:
1. Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
Abstract
Abstract
In this study, we exploited a plasmid-based assay that detects the new DNA synthesis (3′ extension) that accompanies Rad51-mediated homology searching and strand invasion steps of homologous recombination to investigate the interplay between Rad51 concentration and homology length. Mouse hybridoma cells that express endogenous levels of Rad51 display an approximate linear increase in the frequency of 3′ extension for homology lengths of 500 bp to 2 kb. At values below ∼500 bp, the frequency of 3′ extension declines markedly, suggesting that this might represent the minimal efficient processing segment for 3′ extension. Overexpression of wild-type Rad51 stimulated the frequency of 3′ extension by ∼3-fold for homology lengths <900 bp, but when homology was >2 kb, 3′ extension frequency increased by as much as 10-fold. Excess wild-type Rad51 did not increase the average 3′ extension tract length. Analysis of cell lines expressing N-terminally FLAG-tagged Rad51 polymerization mutants F86E, A89E, or F86E/A89E established that the 3′ extension process requires Rad51 polymerization activity. Mouse hybridoma cells that have reduced Brca2 (Breast cancer susceptibility 2) due to stable expression of small interfering RNA show a significant reduction in 3′ extension efficiency; expression of wild-type human BRCA2, but not a BRCA2 variant devoid of BRC repeats 1–8, rescues the 3′ extension defect in these cells. Our results suggest that increased Rad51 concentration and homology length interact synergistically to promote 3′ extension, presumably as a result of enhanced Brca2-mediated Rad51 polymerization.
Publisher
Oxford University Press (OUP)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献