Complex Coding and Regulatory Polymorphisms in a Restriction Factor Determine the Susceptibility of Drosophila to Viral Infection

Author:

Cao Chuan1,Cogni Rodrigo11,Barbier Vincent21,Jiggins Francis M1

Affiliation:

1. Department of Genetics, University of Cambridge, CB2 3EH, United Kingdom

2. Institut de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Strasbourg, 67084, France

Abstract

Abstract It is common to find that major-effect genes are an important cause of variation in susceptibility to infection. Here we have characterized natural variation in a gene called pastrel that explains over half of the genetic variance in susceptibility to the Drosophila C virus (DCV) in populations of Drosophila melanogaster. We found extensive allelic heterogeneity, with a sample of seven alleles of pastrel from around the world conferring four phenotypically distinct levels of resistance. By modifying candidate SNPs in transgenic flies, we show that the largest effect is caused by an amino acid polymorphism that arose when an ancestral threonine was mutated to alanine, greatly increasing resistance to DCV. Overexpression of the ancestral, susceptible allele provides strong protection against DCV; indicating that this mutation acted to improve an existing restriction factor. The pastrel locus also contains complex structural variation and cis-regulatory polymorphisms altering gene expression. We find that higher expression of pastrel is associated with increased survival after DCV infection. To understand why this variation is maintained in populations, we investigated genetic variation surrounding the amino acid variant that is causing flies to be resistant. We found no evidence of natural selection causing either recent changes in allele frequency or geographical variation in frequency, suggesting that this is an old polymorphism that has been maintained at a stable frequency. Overall, our data demonstrate how complex genetic variation at a single locus can control susceptibility to a virulent natural pathogen.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3