Kel1p Mediates Yeast Cell Fusion Through a Fus2p- and Cdc42p-Dependent Mechanism

Author:

Smith Jean A,Rose Mark D1

Affiliation:

1. Department of Molecular Biology, Princeton University, New Jersey 08544

Abstract

Abstract Cell fusion is ubiquitous among eukaryotes. Although little is known about the molecular mechanism, several proteins required for cell fusion in the yeast Saccharomyces cerevisiae have been identified. Fus2p, a key regulator of cell fusion, localizes to the shmoo tip in a highly regulated manner. C-terminal truncations of Fus2p cause mislocalization and fusion defects, which are suppressed by overexpression of Kel1p, a kelch-domain protein of unknown function previously implicated in cell fusion. We hypothesize that Fus2p mislocalization is caused by auto-inhibition, which is alleviated by Kel1p overexpression. Previous work showed that Fus2p localization is mediated by both Fus1p- and actin-dependent pathways. We show that the C-terminal mutations mainly affect the actin-dependent pathway. Suppression of the Fus2p localization defect by Kel1p is dependent upon Fus1p, showing that suppression does not bypass the normal pathway. Kel1p and a homolog, Kel2p, are required for efficient Fus2p localization, acting through the actin-dependent pathway. Although Kel1p overexpression can weakly suppress the mating defect of a FUS2 deletion, the magnitude of suppression is allele specific. Therefore, Kel1p augments, but does not bypass, Fus2p function. Fus2p mediates cell fusion by binding activated Cdc42p. Although Kel1p overexpression suppresses a Cdc42p mutant that is defective for Fus2p binding, cell fusion remains dependent upon Fus2p. These data suggest that Fus2p, Cdc42p, and Kel1p form a ternary complex, which is stabilized by Kel1p. Supporting this hypothesis, Kel1p interacts with two domains of Fus2p, partially dependent on Cdc42p. We conclude that Kel1p enhances the activity of Fus2p/Cdc42p in cell fusion.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3