Divergent Functions Through Alternative Splicing: The Drosophila CRMP Gene in Pyrimidine Metabolism, Brain, and Behavior

Author:

Morris Deanna H1,Dubnau Josh2,Park Jae H3,Rawls John M1

Affiliation:

1. Molecular and Cellular Biology Group, Department of Biology, University of Kentucky, Lexington, Kentucky 40506

2. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, and

3. Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996

Abstract

Abstract DHP and CRMP proteins comprise a family of structurally similar proteins that perform divergent functions, DHP in pyrimidine catabolism in most organisms and CRMP in neuronal dynamics in animals. In vertebrates, one DHP and five CRMP proteins are products of six genes; however, Drosophila melanogaster has a single CRMP gene that encodes one DHP and one CRMP protein through tissue-specific, alternative splicing of a pair of paralogous exons. The proteins derived from the fly gene are identical over 90% of their lengths, suggesting that unique, novel functions of these proteins derive from the segment corresponding to the paralogous exons. Functional homologies of the Drosophila and mammalian CRMP proteins are revealed by several types of evidence. Loss-of-function CRMP mutation modifies both Ras and Rac misexpression phenotypes during fly eye development in a manner that is consistent with the roles of CRMP in Ras and Rac signaling pathways in mammalian neurons. In both mice and flies, CRMP mutation impairs learning and memory. CRMP mutant flies are defective in circadian activity rhythm. Thus, DHP and CRMP proteins are derived by different processes in flies (tissue-specific, alternative splicing of paralogous exons of a single gene) and vertebrates (tissue-specific expression of different genes), indicating that diverse genetic mechanisms have mediated the evolution of this protein family in animals.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3