Maximizing the Reliability of Genomic Selection by Optimizing the Calibration Set of Reference Individuals: Comparison of Methods in Two Diverse Groups of Maize Inbreds (Zea mays L.)

Author:

Rincent R1234,Laloë D5,Nicolas S1,Altmann T6,Brunel D7,Revilla P8,Rodríguez V M8,Moreno-Gonzalez J9,Melchinger A10,Bauer E11,Schoen C-C11,Meyer N3,Giauffret C12,Bauland C1,Jamin P1,Laborde J13,Monod H14,Flament P4,Charcosset A1,Moreau L1

Affiliation:

1. Unité Mixte de Recherche (UMR) de Génétique Végétale, Institut National de la Recherche Agronomique (INRA), Université Paris-Sud, Centre National de la Recherche Scientifique (CNRS), 91190 Gif-sur-Yvette, France

2. BIOGEMMA, Genetics and Genomics in Cereals, 63720 Chappes, France

3. KWS Saat AG, Grimsehlstr 31, 37555 Einbeck, Germany

4. Limagrain, site d’ULICE, av G. Gershwin, BP173, 63204 Riom Cedex, France

5. UMR 1313 de Génétique Animale et Biologie Intégrative, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas, France

6. Max-Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany, and Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany

7. Unité de Recherche (UR) 1279 Etude du Polymorphisme des Génomes Végétaux, INRA, Commisariat à l'Energie Atomique (CEA) Institut de Génomique, Centre National de Génotypage, 91057 Evry, France

8. Misión Biológica de Galicia, Spanish National Research Council (CSIC), 36080 Pontevedra, Spain

9. Centro de Investigaciones Agrarias de Mabegondo, 15080 La Coruna, Spain

10. Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany

11. Department of Plant Breeding, Technische Universität München, 85354 Freising, Germany

12. INRA/Université des Sciences et Technologies de Lille, UMR1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, 80203 Péronne Cedex, France

13. INRA, Stn Expt Mais, 40590 St Martin De Hinx, France

14. INRA, Unité de Mathématique et Informatique Appliquées, UR 341, 78352 Jouy-en-Josas, France

Abstract

Abstract Genomic selection refers to the use of genotypic information for predicting breeding values of selection candidates. A prediction formula is calibrated with the genotypes and phenotypes of reference individuals constituting the calibration set. The size and the composition of this set are essential parameters affecting the prediction reliabilities. The objective of this study was to maximize reliabilities by optimizing the calibration set. Different criteria based on the diversity or on the prediction error variance (PEV) derived from the realized additive relationship matrix–best linear unbiased predictions model (RA–BLUP) were used to select the reference individuals. For the latter, we considered the mean of the PEV of the contrasts between each selection candidate and the mean of the population (PEVmean) and the mean of the expected reliabilities of the same contrasts (CDmean). These criteria were tested with phenotypic data collected on two diversity panels of maize (Zea mays L.) genotyped with a 50k SNPs array. In the two panels, samples chosen based on CDmean gave higher reliabilities than random samples for various calibration set sizes. CDmean also appeared superior to PEVmean, which can be explained by the fact that it takes into account the reduction of variance due to the relatedness between individuals. Selected samples were close to optimality for a wide range of trait heritabilities, which suggests that the strategy presented here can efficiently sample subsets in panels of inbred lines. A script to optimize reference samples based on CDmean is available on request.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3