Dormancy Genes From Weedy Rice Respond Divergently to Seed Development Environments

Author:

Gu Xing-You1,Kianian Shahryar F1,Foley Michael E2

Affiliation:

1. Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58105 and

2. Biosciences Research Laboratory, USDA-Agricultural Research Service, Fargo, North Dakota 58105

Abstract

Abstract Genes interacting with seed developmental environments control primary dormancy. To understand how a multigenic system evolved to adapt to the changing environments in weedy rice, we evaluated genetic components of three dormancy QTL in a synchronized nondormant genetic background. Two genetically identical populations segregating for qSD1, qSD7-1, and qSD12 were grown under greenhouse and natural conditions differing in temperature, relative humidity, and light intensity during seed development. Low temperatures tended to enhance dormancy in both conditions. However, genotypes responded to the environments divergently so that two populations displayed similar distributions for germination. Additive and/or dominance effects of the three loci explained ∼90% of genetic variances and their epistases accounted for the remainder in each environment. The qSD1 and qSD7-1 main effects were increased, while the qSD12 additive effect was decreased by relatively low temperatures. Both gene main and epistatic effects were involved in G × E interactions, which in magnitude were greater than environmental main effect. The divergent responses of dormancy genes observed in this simple multigenic system presumably have selective advantages in natural populations adapted to changing environments and hence represent a genetic mechanism stabilizing the dormancy level of weedy rice ripened in different seasons or temperature regimes.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3