Joint Prediction of the Effective Population Size and the Rate of Fixation of Deleterious Mutations

Author:

Santiago Enrique1,Caballero Armando2

Affiliation:

1. Departamento de Biología Funcional, Facultad de Biología, Universidad de Oviedo, 33071 Oviedo, Spain

2. Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, 36310 Vigo, Spain

Abstract

Abstract Mutation, genetic drift, and selection are considered the main factors shaping genetic variation in nature. There is a lack, however, of general predictions accounting for the mutual interrelation between these factors. In the context of the background selection model, we provide a set of equations for the joint prediction of the effective population size and the rate of fixation of deleterious mutations, which are applicable both to sexual and asexual species. For a population of N haploid individuals and a model of deleterious mutations with effect s appearing with rate U in a genome L Morgans long, the asymptotic effective population size (Ne) and the average number of generations (T) between consecutive fixations can be approximated by Ne≈N exp [−2U/(2s +L) (1−1/UT)3] and T≈[exp(2sNe) −1]/[2UsNe]. The solution is applicable to Muller’s ratchet, providing satisfactory approximations to the rate of accumulation of mutations for a wide range of parameters. We also obtain predictions of the effective size accounting for the expected nucleotide diversity. Predictions for sexual populations allow for outlining the general conditions where mutational meltdown occurs. The equations can be extended to any distribution of mutational effects and the consideration of hotspots of recombination, showing that Ne is rather insensitive and not proportional to changes in N for many combinations of parameters. This could contribute to explain the observed small differences in levels of polymorphism between species with very different census sizes.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3