Variant Linkage Analysis Using de Novo Transcriptome Sequencing Identifies a Conserved Phosphine Resistance Gene in Insects

Author:

Schlipalius David I123,Tuck Andrew G123,Jagadeesan Rajeswaran23,Nguyen Tam14,Kaur Ramandeep2,Subramanian Sabtharishi5,Barrero Roberto36,Nayak Manoj23,Ebert Paul R13

Affiliation:

1. School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia

2. Queensland Department of Agriculture and Fisheries, Queensland Government, Dutton Park, Queensland 4012, Australia

3. Plant Biosecurity Cooperative Research Centre, Canberra, Australian Capital Territory 2617, Australia

4. Department of Genetics, Faculty of Biology, Hanoi National University of Education, Vietnam

5. Divison of Entomology, Indian Agricultural Research Institute, New Delhi 110 012, India

6. Centre for Comparative Genomics, Murdoch University, Western Australia 6150, Australia

Abstract

Abstract Next-generation sequencing methods enable identification of the genetic basis of traits in species that have no prior genomic information available. The combination of next-generation sequencing, variant analysis, and linkage is a powerful way of identifying candidate genes for a trait of interest. Here, we used a comparative transcriptomics [RNA sequencing (RNAseq)] and genetic linkage analysis approach to identify the rph1 gene. rph1 variants are responsible for resistance to the fumigant phosphine (PH3) that is used to control insect pests of stored grain. In each of the four major species of pest insect of grain we have investigated, there are two major resistance genes, rph1 and rph2, which interact synergistically to produce strongly phosphine-resistant insects. Using RNAseq and genetic linkage analyses, we identified candidate resistance (rph1) genes in phosphine-resistant strains of three species: Rhyzopertha dominica (129 candidates), Sitophilus oryzae (206 candidates), and Cryptolestes ferrugineus (645 candidates). We then compared these candidate genes to 17 candidate resistance genes previously mapped in Tribolium castaneum and found only one orthologous gene, a cytochrome b5 fatty acid desaturase (Cyt-b5-r), to be associated with the rph1 locus in all four species. This gene had either missense amino acid substitutions and/or insertion/deletions/frameshift variants in each of 18 phosphine-resistant strains that were not observed in the susceptible strains of the four species. We propose a model of phosphine action and resistance in which phosphine induces lipid peroxidation through reactive oxygen species generated by dihydrolipoamide dehydrogenase, whereas disruption of Cyt-b5-r in resistant insects decreases the polyunsaturated fatty acid content of membranes, thereby limiting the potential for lipid peroxidation.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3