A Reassessment of Genes Modulating Aging in Mice Using Demographic Measurements of the Rate of Aging

Author:

Pedro de Magalhães João1,Thompson Louise,de Lima Izabella,Gaskill Dale,Li Xiaoyu,Thornton Daniel,Yang Chenhao,Palmer Daniel

Affiliation:

1. Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, L7 8TX, United Kingdom

Abstract

Abstract Many studies have reported genetic interventions that have an effect on mouse life span; however, it is crucial to discriminate between manipulations of aging and aging-independent causes of life extension. Here, we used the Gompertz equation to determine whether previously reported aging-related mouse genes statistically affect the demographic rate of aging. Of 30 genetic manipulations previously reported to extend life span, for only two we found evidence of retarding demographic aging: Cisd2 and hMTH1. Of 24 genetic manipulations reported to shorten life span and induce premature aging features, we found evidence of five accelerating demographic aging: Casp2, Fn1, IKK-β, JunD, and Stub1. Overall, our reassessment found that only 15% of the genetic manipulations analyzed significantly affected the demographic rate of aging as predicted, suggesting that a relatively small proportion of interventions affecting longevity do so by regulating the rate of aging. By contrast, genetic manipulations affecting longevity tend to impact on aging-independent mortality. Our meta-analysis of multiple mouse longevity studies also reveals substantial variation in the controls used across experiments, suggesting that a short life span of controls is a potential source of bias. Overall, the present work leads to a reassessment of genes affecting the aging process in mice, with broad implications for our understanding of the genetics of mammalian aging and which genes may be more promising targets for drug discovery.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3