Mutational Pleiotropy and the Strength of Stabilizing Selection Within and Between Functional Modules of Gene Expression

Author:

Collet Julie M1,McGuigan Katrina,Allen Scott L,Chenoweth Stephen F,Blows Mark W

Affiliation:

1. School of Biological Sciences, The University of Queensland, Brisbane 4072, Queensland, Australia

Abstract

Abstract Collet et al. adopt a high-dimensional quantitative genetic approach using gene expression traits to test for the presence of modularity of the genotype-phenotype map, where traits contributing to the same function (functional modularity)... Variational modules, sets of pleiotropically covarying traits, affect phenotypic evolution, and therefore are predicted to reflect functional modules, such that traits within a variational module also share a common function. Such an alignment of function and pleiotropy is expected to facilitate adaptation by reducing the deleterious effects of mutations, and by allowing coordinated evolution of functionally related sets of traits. Here, we adopt a high-dimensional quantitative genetic approach using a large number of gene expression traits in Drosophila serrata to test whether functional grouping, defined by gene ontology (GO terms), predicts variational modules. Mutational or standing genetic covariance was significantly greater than among randomly grouped sets of genes for 38% of our functional groups, indicating that GO terms can predict variational modularity to some extent. We estimated stabilizing selection acting on mutational covariance to test the prediction that functional pleiotropy would result in reduced deleterious effects of mutations within functional modules. Stabilizing selection within functional modules was weaker than that acting on randomly grouped sets of genes in only 23% of functional groups, indicating that functional alignment can reduce deleterious effects of pleiotropic mutation but typically does not. Our analyses also revealed the presence of variational modules that spanned multiple functions.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3