The Evolutionary Genetics of the Genes Underlying Phenotypic Associations for Loblolly Pine (Pinus taeda, Pinaceae)

Author:

Eckert Andrew J1,Wegrzyn Jill L2,Liechty John D2,Lee Jennifer M3,Cumbie W Patrick4,Davis John M5,Goldfarb Barry6,Loopstra Carol A7,Palle Sreenath R7,Quesada Tania5,Langley Charles H8,Neale David B2

Affiliation:

1. Department of Biology, Virginia Commonwealth University, Richmond, Virginia 23284

2. Department of Plant Sciences, University of California, Davis, California 95616

3. Computercraft, McLean, Virginia 22101

4. ArborGen, Ridgeville, South Carolina 29472

5. School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611

6. Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695

7. Department of Ecosystem Science and Management, Texas A&M University, College Station, Texas 77843

8. Department of Evolution and Ecology, University of California, Davis, California 95616

Abstract

Abstract A primary goal of evolutionary genetics is to discover and explain the genetic basis of fitness-related traits and how this genetic basis evolves within natural populations. Unprecedented technological advances have fueled the discovery of genetic variants associated with ecologically relevant phenotypes in many different life forms, as well as the ability to scan genomes for deviations from selectively neutral models of evolution. Theoretically, the degree of overlap between lists of genomic regions identified using each approach is related to the genetic architecture of fitness-related traits and the strength and type of natural selection molding variation at these traits within natural populations. Here we address for the first time in a plant the degree of overlap between these lists, using patterns of nucleotide diversity and divergence for >7000 unique amplicons described from the extensive expressed sequence tag libraries generated for loblolly pine (Pinus taeda L.) in combination with the >1000 published genetic associations. We show that loci associated with phenotypic traits are distinct with regard to neutral expectations. Phenotypes measured at the whole plant level (e.g., disease resistance) exhibit an approximately twofold increase in the proportion of adaptive nonsynonymous substitutions over the genome-wide average. As expected for polygenic traits, these signals were apparent only when loci were considered at the level of functional sets. The ramifications of this result are discussed in light of the continued efforts to dissect the genetic basis of quantitative traits.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3