Effect of Translesion DNA Polymerases, Endonucleases and RpoS on Mutation Rates in Salmonella typhimurium

Author:

Koskiniemi Sanna1,Hughes Diarmaid2,Andersson Dan I1

Affiliation:

1. Department of Medical Biochemistry and Microbiology and

2. Department of Cell and Molecular Biology, Uppsala University, S-75123 Uppsala, Sweden

Abstract

Abstract It has been suggested that bacteria have evolved mechanisms to increase their mutation rate in response to various stresses and that the translesion DNA polymerase Pol IV under control of the LexA regulon and the alternative sigma factor RpoS are involved in regulating this mutagenesis. Here we examined in Salmonella enterica serovar Typhimurium LT2 the rates for four different types of mutations (rifampicin, nalidixic acid, and chlorate resistance and Lac+ reversion) during various growth conditions and with different levels of four translesion DNA polymerases (Pol II, Pol IV, Pol V, and SamAB) and RpoS. Constitutive derepression of the LexA regulon by a lexA(def) mutation had no effect on Lac+ reversion rates but increased the other three mutation rates up to 11-fold, and the contribution of the translesion DNA polymerases to this mutagenesis varied with the type of mutation examined. The increase in mutation rates in the lexA(def) mutant required the presence of the LexA-controlled UvrB protein and endonucleases UvrC and Cho. With regard to the potential involvement of RpoS in mutagenesis, neither an increase in RpoS levels conferred by artificial overexpression from a plasmid nor long-term stationary phase incubation or slow growth caused an increase in any of the four mutation rates measured, alone or in combination with overexpression of the translesion DNA polymerases. In conclusion, mutation rates are remarkably robust and no combination of growth conditions, induction of translesion DNA polymerases by inactivation of LexA, or increased RpoS expression could confer an increase in mutation rates higher than the moderate increase caused by derepression of the LexA regulon alone.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3