Novel Neuroprotective Loci Modulating Ischemic Stroke Volume in Wild-Derived Inbred Mouse Strains

Author:

Lee Han Kyu1,Widmayer Samuel J2,Huang Min-Nung3,Aylor David L2,Marchuk Douglas A1

Affiliation:

1. Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710

2. Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695

3. Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710

Abstract

Abstract To identify genes involved in cerebral infarction, we have employed a forward genetic approach in inbred mouse strains, using quantitative trait loci (QTL) mapping for cerebral infarct volume after middle cerebral artery occlusion. We had previously observed that infarct volume is inversely correlated with cerebral collateral vessel density in most strains. In this study, we expanded the pool of allelic variation among classical inbred mouse strains by utilizing the eight founder strains of the Collaborative Cross and found a wild-derived strain, WSB/EiJ, that breaks this general rule that collateral vessel density inversely correlates with infarct volume. WSB/EiJ and another wild-derived strain, CAST/EiJ, show the highest collateral vessel densities of any inbred strain, but infarct volume of WSB/EiJ mice is 8.7-fold larger than that of CAST/EiJ mice. QTL mapping between these strains identified four new neuroprotective loci modulating cerebral infarct volume while not affecting collateral vessel phenotypes. To identify causative variants in genes, we surveyed nonsynonymous coding SNPs between CAST/EiJ and WSB/EiJ and found 96 genes harboring coding SNPs predicted to be damaging and mapping within one of the four intervals. In addition, we performed RNA-sequencing for brain tissue of CAST/EiJ and WSB/EiJ mice and identified 79 candidate genes mapping in one of the four intervals showing strain-specific differences in expression. The identification of the genes underlying these neuroprotective loci will provide new understanding of genetic risk factors of ischemic stroke, which may provide novel targets for future therapeutic intervention of human ischemic stroke.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference48 articles.

1. A method and server for predicting damaging missense mutations.;Adzhubei;Nat. Methods,2010

2. HTSeq–a Python framework to work with high-throughput sequencing data.;Anders;Bioinformatics,2015

3. Genetic analysis of complex traits in the emerging Collaborative Cross.;Aylor;Genome Res.,2011

4. Mouse strain differences in susceptibility to cerebral ischemia are related to cerebral vascular anatomy.;Barone;J. Cereb. Blood Flow Metab.,1993

5. Controlling the false discovery rate: a practical and powerful approach to multiple testing.;Benjamini;J. R. Stat. Soc. B,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3