Comparison of the Full Distribution of Fitness Effects of New Amino Acid Mutations Across Great Apes

Author:

Castellano David1,Macià Moisès Coll,Tataru Paula,Bataillon Thomas,Munch Kasper

Affiliation:

1. Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark

Abstract

Abstract Castellano et al. provide the first comparison of the full distribution of fitness effects (including deleterious, neutral but also beneficial mutations) in the great apes. The authors investigate which aspects of the full DFE are likely... The distribution of fitness effects (DFE) is central to many questions in evolutionary biology. However, little is known about the differences in DFE between closely related species. We use >9000 coding genes orthologous one-to-one across great apes, gibbons, and macaques to assess the stability of the DFE across great apes. We use the unfolded site frequency spectrum of polymorphic mutations (n = 8 haploid chromosomes per population) to estimate the DFE. We find that the shape of the deleterious DFE is strikingly similar across great apes. We confirm that effective population size (Ne) is a strong predictor of the strength of negative selection, consistent with the nearly neutral theory. However, we also find that the strength of negative selection varies more than expected given the differences in Ne between species. Across species, mean fitness effects of new deleterious mutations covaries with Ne, consistent with positive epistasis among deleterious mutations. We find that the strength of negative selection for the smallest populations, bonobos and western chimpanzees, is higher than expected given their Ne. This may result from a more efficient purging of strongly deleterious recessive variants in these populations. Forward simulations confirm that these findings are not artifacts of the way we are inferring Ne and DFE parameters. All findings are replicated using only GC-conservative mutations, thereby confirming that GC-biased gene conversion is not affecting our conclusions.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3