Fine-Scale Inference of Ancestry Segments Without Prior Knowledge of Admixing Groups

Author:

Salter-Townshend Michael1,Myers Simon2

Affiliation:

1. School of Mathematics and Statistics, University College Dublin, Ireland

2. Dept. of Statistics, University of Oxford and Wellcome Trust Centre for Human Genetics, Oxford, UK

Abstract

Abstract Salter-Townshend and Myers present an open source tool for modelling multi-way admixture events using dense haplotype data. Their Hidden Markov Model approach is scalable to thousands of samples and, unlike existing methods... We present an algorithm for inferring ancestry segments and characterizing admixture events, which involve an arbitrary number of genetically differentiated groups coming together. This allows inference of the demographic history of the species, properties of admixing groups, identification of signatures of natural selection, and may aid disease gene mapping. The algorithm employs nested hidden Markov models to obtain local ancestry estimation along the genome for each admixed individual. In a range of simulations, the accuracy of these estimates equals or exceeds leading existing methods. Moreover, and unlike these approaches, we do not require any prior knowledge of the relationship between subgroups of donor reference haplotypes and the unseen mixing ancestral populations. Our approach infers these in terms of conditional “copying probabilities.” In application to the Human Genome Diversity Project, we corroborate many previously inferred admixture events (e.g., an ancient admixture event in the Kalash). We further identify novel events such as complex four-way admixture in San-Khomani individuals, and show that Eastern European populations possess 1−3% ancestry from a group resembling modern-day central Asians. We also identify evidence of recent natural selection favoring sub-Saharan ancestry at the human leukocyte antigen (HLA) region, across North African individuals. We make available an R and C++ software library, which we term MOSAIC (which stands for MOSAIC Organizes Segments of Ancestry In Chromosomes).

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3