From Drift to Draft: How Much Do Beneficial Mutations Actually Contribute to Predictions of Ohta’s Slightly Deleterious Model of Molecular Evolution?

Author:

Chen Jun12,Glémin Sylvain23,Lascoux Martin2

Affiliation:

1. College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China

2. Program in Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden

3. Université de Rennes, Centre National de la Recherche Scientifique (CNRS), ECOBIO (Ecosystèmes, Biodiversité, Evolution) - Unité Mixte de Recherche (UMR) 6553, F-35000 Rennes, France

Abstract

Abstract Since its inception in 1973, the slightly deleterious model of molecular evolution, also known as the nearly neutral theory of molecular evolution, remains a central model to explain the main patterns of DNA polymorphism in natural populations. This is not to say that the quantitative fit to data are perfect. A recent study used polymorphism data from Drosophila melanogaster to test whether, as predicted by the nearly neutral theory, the proportion of effectively neutral mutations depends on the effective population size (Ne). It showed that a nearly neutral model simply scaling with Ne variation across the genome could not alone explain the data, but that consideration of linked positive selection improves the fit between observations and predictions. In the present article, we extended the work in two main directions. First, we confirmed the observed pattern on a set of 59 species, including high-quality genomic data from 11 animal and plant species with different mating systems and effective population sizes, hence a priori different levels of linked selection. Second, for the 11 species with high-quality genomic data we also estimated the full distribution of fitness effects (DFE) of mutations, and not solely the DFE of deleterious mutations. Both Ne and beneficial mutations contributed to the relationship between the proportion of effectively neutral mutations and local Ne across the genome. In conclusion, the predictions of the slightly deleterious model of molecular evolution hold well for species with small Ne, but for species with large Ne, the fit is improved by incorporating linked positive selection to the model.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3