Bayesian Estimation of Population Size Changes by Sampling Tajima’s Trees

Author:

Palacios Julia A12,Véber Amandine3,Cappello Lorenzo1,Wang Zhangyuan4,Wakeley John5,Ramachandran Sohini67

Affiliation:

1. Department of Statistics, Stanford University, California 94305

2. Department of Biomedical Data Science, Stanford School of Medicine, California 94305

3. Centre de Mathématiques Appliquées, École Polytechnique 91128, Le Centre National de la Recherche Scientifique, Palaiseau, France 91767

4. Department of Computer Science, Stanford University, California 94305

5. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138

6. Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912

7. Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912

Abstract

Abstract The large state space of gene genealogies is a major hurdle for inference methods based on Kingman’s coalescent. Here, we present a new Bayesian approach for inferring past population sizes, which relies on a lower-resolution coalescent process that we refer to as “Tajima’s coalescent.” Tajima’s coalescent has a drastically smaller state space, and hence it is a computationally more efficient model, than the standard Kingman coalescent. We provide a new algorithm for efficient and exact likelihood calculations for data without recombination, which exploits a directed acyclic graph and a correspondingly tailored Markov Chain Monte Carlo method. We compare the performance of our Bayesian Estimation of population size changes by Sampling Tajima’s Trees (BESTT) with a popular implementation of coalescent-based inference in BEAST using simulated and human data. We empirically demonstrate that BESTT can accurately infer effective population sizes, and it further provides an efficient alternative to the Kingman’s coalescent. The algorithms described here are implemented in the R package phylodyn, which is available for download at https://github.com/JuliaPalacios/phylodyn.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Efficient Coalescent Model for Heterochronously Sampled Molecular Data;Journal of the American Statistical Association;2024-04-17

2. CRP-Tree: a phylogenetic association test for binary traits;Journal of the Royal Statistical Society Series C: Applied Statistics;2023-11-13

3. Joint inference of evolutionary transitions to self-fertilization and demographic history using whole-genome sequences;eLife;2023-05-11

4. Robust inference of population size histories from genomic sequencing data;PLOS Computational Biology;2022-09-16

5. An adjacent-swap Markov chain on coalescent trees;Journal of Applied Probability;2022-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3