Regulation of Nucleolar Dominance in Drosophila melanogaster

Author:

Warsinger-Pepe Natalie12,Li Duojia23,Yamashita Yukiko M245

Affiliation:

1. Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan

2. Life Sciences Institute, University of Michigan, Ann Arbor, Michigan

3. Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan

4. Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan

5. Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109

Abstract

Abstract In eukaryotic genomes, ribosomal RNA (rRNA) genes exist as tandemly repeated clusters, forming ribosomal DNA (rDNA) loci. Each rDNA locus typically contains hundreds of rRNA genes to meet the high demand of ribosome biogenesis. Nucleolar dominance is a phenomenon whereby individual rDNA loci are entirely silenced or transcribed, and is believed to be a mechanism to control rRNA dosage. Nucleolar dominance was originally noted to occur in interspecies hybrids, and has been shown to occur within a species (i.e., nonhybrid context). However, studying nucleolar dominance within a species has been challenging due to the highly homogenous sequence across rDNA loci. By utilizing single nucleotide polymorphisms between X rDNA and Y rDNA loci in males, as well as sequence variations between two X rDNA loci in females, we conducted a thorough characterization of nucleolar dominance throughout development of Drosophila melanogaster. We demonstrate that nucleolar dominance is a developmentally regulated program that occurs in nonhybrid, wild-type D. melanogaster, where Y rDNA dominance is established during male embryogenesis, whereas females normally do not exhibit dominance between two X rDNA loci. By utilizing various chromosomal complements (e.g., X/Y, X/X, X/X/Y) and a chromosome rearrangement, we show that the short arm of the Y chromosome including the Y rDNA likely contains information that instructs the state of nucleolar dominance. Our study begins to reveal the mechanisms underlying the selection of rDNA loci for activation/silencing in nucleolar dominance in the context of nonhybrid D. melanogaster.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3