Interpreting Coronary Artery Disease Risk Through Gene–Environment Interactions in Gene Regulation

Author:

Findley Anthony S11,Richards Allison L11,Petrini Cristiano1,Alazizi Adnan1,Doman Elizabeth1,Shanku Alexander G1,Davis Gordon O1,Hauff Nancy2,Sorokin Yoram2,Wen Xiaoquan3,Pique-Regi Roger12,Luca Francesca12

Affiliation:

1. Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201

2. Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48201

3. Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109

Abstract

Abstract Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Epidemiological and genome-wide association studies have identified environmental and genetic risk factors for CVD. Using human vascular endothelial cells treated with dexamethasone, retinoic acid, caffeine, and selenium... GWAS and eQTL studies identified thousands of genetic variants associated with complex traits and gene expression. Despite the important role of environmental exposures in complex traits, only a limited number of environmental factors were measured in these studies. Measuring molecular phenotypes in tightly controlled cellular environments provides a more tractable setting to study gene–environment interactions in the absence of other confounding variables. We performed RNA-seq and ATAC-seq in endothelial cells exposed to retinoic acid, dexamethasone, caffeine, and selenium to model genetic and environmental effects on gene regulation in the vascular endothelium—a common site of pathology in cardiovascular disease. We found that genes near regions of differentially accessible chromatin were more likely to be differentially expressed [OR = (3.41, 6.52), p<10−16]. Furthermore, we confirmed that environment-specific changes in transcription factor binding are a key mechanism for cellular response to environmental stimuli. Single nucleotide polymorphisms (SNPs) in these transcription response factor footprints for dexamethasone, caffeine, and retinoic acid were enriched in GTEx eQTLs from artery tissues, indicating that these environmental conditions are latently present in GTEx samples. Additionally, SNPs in footprints for response factors in caffeine are enriched in colocalized eQTLs for coronary artery disease (CAD), suggesting a role for caffeine in CAD risk. By combining GWAS, eQTLs, and response genes, we annotated environmental components that can increase or decrease disease risk through changes in gene expression in 43 genes. Interestingly, each treatment may amplify or buffer genetic risk for CAD, depending on the particular SNP or gene considered.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3