Selective Sweep at a QTL in a Randomly Fluctuating Environment

Author:

Chevin Luis-Miguel1

Affiliation:

1. Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, University of Montpellier, University of Paul Valéry Montpellier 3, EPHE, IRD, France

Abstract

Abstract Adaptation is mediated by phenotypic traits that are often near continuous, and undergo selective pressures that may change with the environment. The dynamics of allelic frequencies at underlying quantitative trait loci (QTL) depend on their own phenotypic effects, but also possibly on other polymorphic loci affecting the same trait, and on environmental change driving phenotypic selection. Most environments include a substantial component of random noise, characterized both by its magnitude and its temporal autocorrelation, which sets the timescale of environmental predictability. I investigate the dynamics of a mutation affecting a quantitative trait in an autocorrelated stochastic environment that causes random fluctuations of an optimum phenotype. The trait under selection may also exhibit background polygenic variance caused by many polymorphic loci of small effects elsewhere in the genome. In addition, the mutation at the QTL may affect phenotypic plasticity, the phenotypic response of given genotype to its environment of development or expression. Stochastic environmental fluctuations increase the variance of the evolutionary process, with consequences for the probability of a complete sweep at the QTL. Background polygenic variation critically alters this process, by setting an upper limit to stochastic variance of population genetics at the QTL. For a plasticity QTL, stochastic fluctuations also influences the expected selection coefficient, and alleles with the same expected trajectory can have very different stochastic variances. Finally, a mutation may be favored through its effect on plasticity despite causing a systematic mismatch with optimum, which is compensated by evolution of the mean background phenotype.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3