Factors Influencing Ascertainment Bias of Microsatellite Allele Sizes: Impact on Estimates of Mutation Rates

Author:

Li Biao11,Kimmel Marek12

Affiliation:

1. Departments of Statistics and Bioengineering, Rice University, Houston, Texas 77005

2. Systems Engineering Group, Silesian University of Technology, Gliwice 44-100, Poland

Abstract

Abstract Microsatellite loci play an important role as markers for identification, disease gene mapping, and evolutionary studies. Mutation rate, which is of fundamental importance, can be obtained from interspecies comparisons, which, however, are subject to ascertainment bias. This bias arises, for example, when a locus is selected on the basis of its large allele size in one species (cognate species 1), in which it is first discovered. This bias is reflected in average allele length in any noncognate species 2 being smaller than that in species 1. This phenomenon was observed in various pairs of species, including comparisons of allele sizes in human and chimpanzee. Various mechanisms were proposed to explain observed differences in mean allele lengths between two species. Here, we examine the framework of a single-step asymmetric and unrestricted stepwise mutation model with genetic drift. Analysis is based on coalescent theory. Analytical results are confirmed by simulations using the simuPOP software. The mechanism of ascertainment bias in this model is a tighter correlation of allele sizes within a cognate species 1 than of allele sizes in two different species 1 and 2. We present computations of the expected average allele size difference, given the mutation rate, population sizes of species 1 and 2, time of separation of species 1 and 2, and the age of the allele. We show that when the past demographic histories of the cognate and noncognate taxa are different, the rate and directionality of mutations affect the allele sizes in the two taxa differently from the simple effect of ascertainment bias. This effect may exaggerate or reverse the effect of difference in mutation rates. We reanalyze literature data, which indicate that despite the bias, the microsatellite mutation rate estimate in the ancestral population is consistently greater than that in either human or chimpanzee and the mutation rate estimate in human exceeds or equals that in chimpanzee with the rate of allele length expansion in human being greater than that in chimpanzee. We also demonstrate that population bottlenecks and expansions in the recent human history have little impact on our conclusions.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3