Genetic Evidence for a Regulatory Pathway Controlling Alternative Oxidase Production in Neurospora crassa

Author:

Descheneau Andrea T,Cleary Ian A1,Nargang Frank E1

Affiliation:

1. Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada

Abstract

Abstract When the cytochrome-mediated mitochondrial electron transport chain of Neurospora crassa is disrupted, an alternative oxidase encoded by the nuclear aod-1 gene is induced. The alternative oxidase donates electrons directly to oxygen from the ubiquininol pool and is insensitive to chemicals such as antimycin A and KCN that affect the standard electron transport chain. To facilitate isolation of mutants affecting regulation of aod-1, a reporter system containing the region upstream of the aod-1 coding sequence fused to the coding sequence of the N. crassa tyrosinase gene (T) was transformed into a strain carrying a null allele of the endogenous T gene. In the resulting reporter strain, growth in the presence of chloramphenicol, an inhibitor of mitochondrial translation whose action decreases the level of mitochondrial translation products resulting in impaired cytochrome-mediated respiration, caused induction of both alternative oxidase and tyrosinase. Conidia from the reporter strain were mutagenized, plated on medium containing chloramphenicol, and colonies that did not express tyrosinase were identified as potential regulatory mutants. After further characterization, 15 strains were found that were unable to induce both the reporter and the alternative oxidase. Complementation analysis revealed that four novel loci involved in aod-1 regulation had been isolated. The discovery that several genes are required for regulation of aod-1 suggests the existence of a complex pathway for signaling from the mitochondria to the nucleus and/or for expression of the gene.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3