Influence of Dominance, Leptokurtosis and Pleiotropy of Deleterious Mutations on Quantitative Genetic Variation at Mutation-Selection Balance

Author:

Zhang Xu-Sheng1,Wang Jinliang2,Hill William G1

Affiliation:

1. Institute of Cell, Animal and Population Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom

2. Institute of Zoology, Zoological Society of London, London NW1 4RY, United Kingdom

Abstract

Abstract In models of maintenance of genetic variance (VG) it has often been assumed that mutant alleles act additively. However, experimental data show that the dominance coefficient varies among mutant alleles and those of large effect tend to be recessive. On the basis of empirical knowledge of mutations, a joint-effect model of pleiotropic and real stabilizing selection that includes dominance is constructed and analyzed. It is shown that dominance can dramatically alter the prediction of equilibrium VG. Analysis indicates that for the situations where mutations are more recessive for fitness than for a quantitative trait, as supported by the available data, the joint-effect model predicts a significantly higher VG than does an additive model. Importantly, for what seem to be realistic distributions of mutational effects (i.e., many mutants may not affect the quantitative trait substantially but are likely to affect fitness), the observed high levels of genetic variation in the quantitative trait under strong apparent stabilizing selection can be generated. This investigation supports the hypothesis that most VG comes from the alleles nearly neutral for fitness in heterozygotes while apparent stabilizing selection is contributed mainly by the alleles of large effect on the quantitative trait. Thus considerations of dominance coefficients of mutations lend further support to our previous conclusion that mutation-selection balance is a plausible mechanism of the maintenance of the genetic variance in natural populations.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3