Stochastic Gene Expression in Fluctuating Environments

Author:

Thattai Mukund1,van Oudenaarden Alexander1

Affiliation:

1. Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

Abstract Stochastic mechanisms can cause a group of isogenic bacteria, each subject to identical environmental conditions, to nevertheless exhibit diverse patterns of gene expression. The resulting phenotypic subpopulations will typically have distinct growth rates. This behavior has been observed in several contexts, including sugar metabolism and pili phase variation. Under fixed environmental conditions, the net growth rate of the population is maximized when all cells are of the fastest growing phenotype, so it is unclear what fitness advantage is conferred by population heterogeneity. However, unlike ideal laboratory conditions, natural environments tend to fluctuate, either periodically or randomly. Here we use a stochastic population model to show that, during growth in such fluctuating environments, a dynamically heterogenous bacterial population can sometimes achieve a higher net growth rate than a homogenous one. By using stochastic mechanisms to sample several distinct phenotypes, the bacteria are able to anticipate and take advantage of sudden changes in their environment. However, this heterogeneity is beneficial only if the bacterial response rate is sufficiently low. Our results could be useful in the design of artificial evolution experiments and in the optimization of fermentation processes.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference30 articles.

Cited by 482 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3