Barren inflorescence1 Functions in Organogenesis During Vegetative and Inflorescence Development in Maize

Author:

Barazesh Solmaz1,McSteen Paula1

Affiliation:

1. Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802

Abstract

Abstract Maize (Zea mays) has a highly branched inflorescence due to the production of different types of axillary meristems. Characterization of the barren inflorescence class of mutants has led to the discovery of genes required for axillary meristem initiation in the inflorescence. Previous studies showed that barren inflorescence2 (bif2) encodes a serine/threonine protein kinase that regulates auxin transport, and barren stalk1 (ba1) encodes a basic helix-loop-helix transcription factor that acts downstream of auxin transport. Here, we characterize Barren inflorescence1 (Bif1), a classical semidominant mutation of maize. Developmental, histological, and genetic analyses show that Bif1 mutants are defective in the initiation of all axillary meristems in the inflorescence. Real time RT–PCR experiments show that both bif2 and ba1 are expressed at lower levels in Bif1 mutants. Double-mutant analyses demonstrate that Bif1 exhibits an epistatic interaction with ba1 and a synergistic interaction with bif2. The dramatic phenotypic enhancement observed in Bif1; bif2 double mutants implies that bif1 plays an overlapping role with bif2 in the initiation of lateral organs during vegetative development. The phenotypic resemblance of Bif1 to bif2 mutants and the reduction of auxin transport in Bif1 mutants suggest that bif1 functions as a regulator of auxin transport in maize.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3