A Genetic Analysis of the Caenorhabditis elegans Detoxification Response

Author:

Fukushige Tetsunari1,Smith Harold E2,Miwa Johji3,Krause Michael W11,Hanover John A241

Affiliation:

1. Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892

2. Genomics Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892

3. Chubu University, Kasugai, 487-8501, Japan

4. Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892

Abstract

Abstract Oxidative damage contributes to human diseases of aging including diabetes, cancer, and cardiovascular disorders. Reactive oxygen species resulting from xenobiotic and endogenous metabolites are sensed by a poorly understood process, triggering a cascade of regulatory factors and leading to the activation of the transcription factor Nrf2 (Nuclear factor-erythroid-related factor 2, SKN-1 in Caenorhabditis elegans). Nrf2/SKN-1 activation promotes the induction of the phase II detoxification system that serves to limit oxidative stress. We have extended a previous C. elegans genetic approach to explore the mechanisms by which a phase II enzyme is induced by endogenous and exogenous oxidants. The xrep (xenobiotics response pathway) mutants were isolated as defective in their ability to properly regulate the induction of a glutathione S-transferase (GST) reporter. The xrep-1 gene was previously identified as wdr-23, which encodes a C. elegans homolog of the mammalian β-propeller repeat-containing protein WDR-23. Here, we identify and confirm the mutations in xrep-2, xrep-3, and xrep-4. The xrep-2 gene is alh-6, an ortholog of a human gene mutated in familial hyperprolinemia. The xrep-3 mutation is a gain-of-function allele of skn-1. The xrep-4 gene is F46F11.6, which encodes a F-box-containing protein. We demonstrate that xrep-4 alters the stability of WDR-23 (xrep-1), a key regulator of SKN-1 (xrep-3). Epistatic relationships among the xrep mutants and their interacting partners allow us to propose an ordered genetic pathway by which endogenous and exogenous stressors induce the phase II detoxification response.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3