The Am-tra2 Gene Is an Essential Regulator of Female Splice Regulation at Two Levels of the Sex Determination Hierarchy of the Honeybee

Author:

Nissen Inga1,Müller Miriam1,Beye Martin1

Affiliation:

1. Department of Genetics, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany

Abstract

Abstract Heteroallelic and homo- or hemiallelic Complementary sex determiner (Csd) proteins determine sexual fate in the honeybee (Apis mellifera) by controlling the alternative splicing of the downstream gene fem (feminizer). Thus far, we have little understanding of how heteroallelic Csd proteins mediate the splicing of female fem messenger RNAs (mRNAs) or how Fem proteins direct the splicing of honeybee dsx (Am-dsx) pre-mRNAs. Here, we report that Am-tra2, which is an ortholog of Drosophila melanogaster tra2, is an essential component of female splicing of the fem and Am-dsx transcripts in the honeybee. The Am-tra2 transcripts are alternatively (but non-sex-specifically) spliced, and they are translated into six protein isoforms that all share the basic RNA-binding domain/RS (arginine/serine) domain structure. Knockdown studies showed that the Am-tra2 gene is required to splice fem mRNAs into the productive female and nonproductive male forms. We suggest that the Am-Tra2 proteins are essential regulators of fem pre-mRNA splicing that, together with heteroallelic Csd proteins and/or Fem proteins, implement the female pathway. In males, the Am-Tra2 proteins may enhance the switch of fem transcripts into the nonproductive male form when heteroallelic Csd proteins are absent. This dual function of Am-Tra2 proteins possibly enhances and stabilizes the binary decision process of male/female splicing. Our knockdown studies also imply that the Am-Tra2 protein is an essential regulator for Am-dsx female splice regulation, suggesting an ancestral role in holometabolous insects. We also provide evidence that the Am-tra2 gene has an essential function in honeybee embryogenesis that is unrelated to sex determination.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3