A Novel Markov Chain Monte Carlo Approach for Constructing Accurate Meiotic Maps

Author:

George Andrew W1

Affiliation:

1. Program in Public Health Genetics, University of Iowa, Iowa City, Iowa 52242

Abstract

Abstract Mapping markers from linkage data continues to be a task performed in many genetic epidemiological studies. Data collected in a study may be used to refine published map estimates and a study may use markers that do not appear in any published map. Furthermore, inaccuracies in meiotic maps can seriously bias linkage findings. To make best use of the available marker information, multilocus linkage analyses are performed. However, two computational issues greatly limit the number of markers currently mapped jointly; the number of candidate marker orders increases exponentially with marker number and computing exact multilocus likelihoods on general pedigrees is computationally demanding. In this article, a new Markov chain Monte Carlo (MCMC) approach that solves both these computational problems is presented. The MCMC approach allows many markers to be mapped jointly, using data observed on general pedigrees with unobserved individuals. The performance of the new mapping procedure is demonstrated through the analysis of simulated and real data. The MCMC procedure performs extremely well, even when there are millions of candidate orders, and gives results superior to those of CRI-MAP.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3