Pleiotropy Can Be Effectively Estimated Without Counting Phenotypes Through the Rank of a Genotype–Phenotype Map

Author:

Gu Xun1

Affiliation:

1. Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, Iowa 50011, and State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China

Abstract

Abstract Although pleiotropy, the capability of a gene to affect multiple phenotypes, has been well known as one of the common gene properties, a quantitative estimation remains a great challenge, simply because of the phenotype complexity. Not surprisingly, it is hard for general readers to understand how, without counting phenotypes, gene pleiotropy can be effectively estimated from the genetics data. In this article we extensively discuss the Gu-2007 method that estimated pleiotropy from the protein sequence analysis. We show that this method is actually to estimate the rank (K) of genotype–phenotype mapping that can be concisely written as K = min(r, Pmin), where Pmin is the minimum pleiotropy among all legitimate measures including the fitness components, and r is the rank of mutational effects of an amino acid site. Together, the effective gene pleiotropy (Ke) estimated by the Gu-2007 method has the following meanings: (i) Ke is an estimate of K = min(r, Pmin), the rank of a genotype–phenotype map; (ii) Ke is an estimate for the minimum pleiotropy Pmin only if Pmin < r; (iii) the Gu-2007 method attempted to estimate the pleiotropy of amino acid sites, a conserved proxy to the true gene pleiotropy; (iv) with a sufficiently large phylogeny such that the rank of mutational effects at an amino acid site is r → 19, one can estimate Pmin between 1 and 19; and (v) Ke is a conserved estimate of K because those slightly affected components in fitness have been effectively removed by the estimation procedure. In addition, we conclude that mutational pleiotropy (number of traits affected by a single mutation) cannot be estimated without knowing the phenotypes.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3