Affiliation:
1. Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112
Abstract
Abstract
High baselines of transcription factor activities represent fundamental obstacles to regulated signaling. Here we show that in Drosophila, quenching of basal activator protein 1 (AP-1) transcription factor activity serves as a prerequisite to its tight spatial and temporal control by the JNK (Jun N-terminal kinase) signaling cascade. Our studies indicate that the novel raw gene product is required to limit AP-1 activity to leading edge epidermal cells during embryonic dorsal closure. In addition, we provide the first evidence that the epidermis has a Basket JNK-independent capacity to activate AP-1 targets and that raw function is required broadly throughout the epidermis to antagonize this activity. Finally, our mechanistic studies of the three dorsal-open group genes [raw, ribbon (rib), and puckered (puc)] indicate that these gene products provide at least two tiers of JNK/AP-1 regulation. In addition to Puckered phosphatase function in leading edge epidermal cells as a negative-feedback regulator of JNK signaling, the three dorsal-open group gene products (Raw, Ribbon, and Puckered) are required more broadly in the dorsolateral epidermis to quench a basal, signaling-independent activity of the AP-1 transcription factor.
Publisher
Oxford University Press (OUP)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献