Epigenetic Control May Explain Large Within-Plant Heterogeneity of Meiotic Behavior in Telocentric Trisomics of Rye

Author:

Sybenga J1,Verhaar H1,Botje D G A1

Affiliation:

1. Laboratory of Genetics, Wageningen University, 6703BD Wageningen, The Netherlands

Abstract

Abstract In telocentric trisomics (telotrisomics) of organisms in which the chromosomes normally have two distinct arms, a single chromosome arm with a centromere is present in addition to a complete diploid set of chromosomes. It is the simplest form of polysomy and suitable for analyzing meiotic pairing and recombination patterns in situations where chromosomes compete for pairing. When no suitable meiotic chromosome markers are available, four metaphase I configurations can be distinguished. Their relative frequencies are indicative of the pairing and recombination patterns. In short arm (1RS) telotrisomics of chromosome 1R of rye (Secale cereale) we observed great differences in pairing and recombination patterns among spikes from different tillers and clones of the same plants. Anthers within spikes were only very rarely different. We analyzed a large number of genotypes, including inbreds as well as hybrids. The effects of genetic and environmental conditions on heterogeneity, if any, were limited. Considering that the reproductive tissue of a spike is derived from one primordial cell, it seems that at the start of sexual differentiation there was variation among cells in chromosomal control, which at meiosis determines pairing and crossing-over competence. We suggest that it is an epigenetic system that rigidly maintains this pattern through generative differentiation. In competitive situations the combination most competent for pairing will pair preferentially, forming specific meiotic configurations with different frequencies for different spikes of the same plant. This would explain the heterogeneity between spikes and the homogeneity within spikes. The epigenetic system could involve chromatin conformation or DNA methylation. There were no signs of heterochromatinization.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3