Abrogation of the Chk1-Pds1 Checkpoint Leads to Tolerance of Persistent Single-Strand Breaks in Saccharomyces cerevisiae

Author:

Karumbati Anandi S1,Wilson Thomas E1

Affiliation:

1. Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0602

Abstract

Abstract In budding yeast, Apn1, Apn2, Tpp1, and Rad1/Rad10 are important enzymes in the removal of spontaneous DNA lesions. apn1 apn2 rad1 yeast are inviable due to accumulation of abasic sites and strand breaks with 3′ blocking lesions. We found that tpp1 apn1 rad1 yeast exhibited slow growth but frequently gave rise to spontaneous slow growth suppressors that segregated as single-gene mutations. Using a candidate gene approach, we identified several tpp1 apn1 rad1 suppressors. Deleting uracil glycosylase suppressed both tpp1 apn1 rad1 and apn1 apn2 rad1 growth defects by reducing the abasic site burden. Mutants affecting the Chk1-Pds1 metaphase-anaphase checkpoint only suppressed tpp1 apn1 rad1 slow growth. In contrast, most S-phase checkpoint mutants were synthetically lethal in a tpp1 apn1 rad1 background. Epistasis analyses showed an additive effect between chk1 and ung1, indicating different mechanisms of suppression. Loss of Chk1 partially restored cell-growth parameters in tpp1 apn1 rad1 yeast, but at the same time exacerbated chromosome instability. We propose a model in which recombinational repair during S phase coupled with failure of the metaphase-anaphase checkpoint allows for tolerance of persistent single-strand breaks at the expense of genome stability.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3