A Multivariate Genome-Wide Association Study of Wing Shape in Drosophila melanogaster

Author:

Pitchers William11,Nye Jessica21,Márquez Eladio J21,Kowalski Alycia1,Dworkin Ian11,Houle David2

Affiliation:

1. Department of Integrative Biology, Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan

2. Department of Biological Science, Florida State University, Tallahassee, Florida

Abstract

Abstract Due to the complexity of genotype–phenotype relationships, simultaneous analyses of genomic associations with multiple traits will be more powerful and informative than a series of univariate analyses. However, in most cases, studies of genotype–phenotype relationships have been analyzed only one trait at a time. Here, we report the results of a fully integrated multivariate genome-wide association analysis of the shape of the Drosophila melanogaster wing in the Drosophila Genetic Reference Panel. Genotypic effects on wing shape were highly correlated between two different laboratories. We found 2396 significant SNPs using a 5% false discovery rate cutoff in the multivariate analyses, but just four significant SNPs in univariate analyses of scores on the first 20 principal component axes. One quarter of these initially significant SNPs retain their effects in regularized models that take into account population structure and linkage disequilibrium. A key advantage of multivariate analysis is that the direction of the estimated phenotypic effect is much more informative than a univariate one. We exploit this fact to show that the effects of knockdowns of genes implicated in the initial screen were on average more similar than expected under a null model. A subset of SNP effects were replicable in an unrelated panel of inbred lines. Association studies that take a phenomic approach, considering many traits simultaneously, are an important complement to the power of genomics.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3