Maximum Likelihood Estimation of Fitness Components in Experimental Evolution

Author:

Liu Jingxian121,Champer Jackson121,Langmüller Anna Maria134,Liu Chen12,Chung Joan12,Reeves Riona12,Luthra Anisha12,Lee Yoo Lim12,Vaughn Andrew H1,Clark Andrew G12,Messer Philipp W1

Affiliation:

1. Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853

2. Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853

3. Institut für Populationsgenetik, Vetmeduni Vienna, 1210, Austria

4. Vienna Graduate School of Population Genetics, 1210, Austria

Abstract

Abstract Estimating fitness differences between allelic variants is a central goal of experimental evolution. Current methods for inferring such differences from allele frequency time series typically assume that the effects of selection can be described by a fixed selection coefficient. However, fitness is an aggregate of several components including mating success, fecundity, and viability. Distinguishing between these components could be critical in many scenarios. Here, we develop a flexible maximum likelihood framework that can disentangle different components of fitness from genotype frequency data, and estimate them individually in males and females. As a proof-of-principle, we apply our method to experimentally evolved cage populations of Drosophila melanogaster, in which we tracked the relative frequencies of a loss-of-function and wild-type allele of yellow. This X-linked gene produces a recessive yellow phenotype when disrupted and is involved in male courtship ability. We find that the fitness costs of the yellow phenotype take the form of substantially reduced mating preference of wild-type females for yellow males, together with a modest reduction in the viability of yellow males and females. Our framework should be generally applicable to situations where it is important to quantify fitness components of specific genetic variants, including quantitative characterization of the population dynamics of CRISPR gene drives.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3