Tethering Recombination Initiation Proteins in Saccharomyces cerevisiae Promotes Double Strand Break Formation

Author:

Koehn Demelza R1,Haring Stuart J,Williams Jaime M1,Malone Robert E1

Affiliation:

1. Department of Biology, University of Iowa, Iowa City, Iowa 52242-1324

Abstract

Abstract Meiotic recombination in Saccharomyces cerevisiae is initiated by the creation of DNA double strand breaks (DSBs), an event requiring 10 recombination initiation proteins. Published data indicate that these 10 proteins form three main interaction subgroups [(Spo11-Rec102-Rec104-Ski8), (Rec114-Rec107-Mei4), and (Mre11-Rad50-Xrs2)], but certain components from each subgroup may also interact. Although several of the protein–protein interactions have been defined, the mechanism for DSB formation has been challenging to define. Using a variation of the approach pioneered by others, we have tethered 8 of the 10 initiation proteins to a recombination coldspot and discovered that in addition to Spo11, 6 others (Rec102, Rec104, Ski8, Rec114, Rec107, and Mei4) promote DSB formation at the coldspot, albeit with different frequencies. Of the 8 proteins tested, only Mre11 was unable to cause DSBs even though it binds to UASGAL at GAL2. Our results suggest there may be several ways that the recombination initiation proteins can associate to form a functional initiation complex that can create DSBs.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3