Ecological Genomics of Anopheles gambiae Along a Latitudinal Cline: A Population-Resequencing Approach

Author:

Cheng Changde1,White Bradley J1,Kamdem Colince23,Mockaitis Keithanne4,Costantini Carlo3,Hahn Matthew W5,Besansky Nora J1

Affiliation:

1. Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556

2. Faculty of Sciences, University of Yaoundé I, Cameroon

3. Institut de Recherche pour le Développement (IRD), MIVEGEC (UMR UM1, CNRS 5290, IRD 224) and Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon

4. The Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana 47405

5. Department of Biology & School of Informatics and Computing, Indiana University, Bloomington, Indiana 47405

Abstract

Abstract The association between fitness-related phenotypic traits and an environmental gradient offers one of the best opportunities to study the interplay between natural selection and migration. In cases in which specific genetic variants also show such clinal patterns, it may be possible to uncover the mutations responsible for local adaptation. The malaria vector, Anopheles gambiae, is associated with a latitudinal cline in aridity in Cameroon; a large inversion on chromosome 2L of this mosquito shows large differences in frequency along this cline, with high frequencies of the inverted karyotype present in northern, more arid populations and an almost complete absence of the inverted arrangement in southern populations. Here we use a genome resequencing approach to investigate patterns of population divergence along the cline. By sequencing pools of individuals from both ends of the cline as well as in the center of the cline—where the inversion is present in intermediate frequency—we demonstrate almost complete panmixia across collinear parts of the genome and high levels of differentiation in inverted parts of the genome. Sequencing of separate pools of each inversion arrangement in the center of the cline reveals large amounts of gene flux (i.e., gene conversion and double crossovers) even within inverted regions, especially away from the inversion breakpoints. The interplay between natural selection, migration, and gene flux allows us to identify several candidate genes responsible for the match between inversion frequency and environmental variables. These results, coupled with similar conclusions from studies of clinal variation in Drosophila, point to a number of important biological functions associated with local environmental adaptation.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3