Chromosome-Level Assembly of the Caenorhabditis remanei Genome Reveals Conserved Patterns of Nematode Genome Organization

Author:

Teterina Anastasia A12,Willis John H1,Phillips Patrick C1

Affiliation:

1. Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403

2. Center of Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 117071, Russia

Abstract

Abstract Caenorhabditis is a group of nematodes that contains the important model organism C. elegans. Several chromosome-level genome assemblies exist for species within this group, but it has been a challenge to fully assemble the genome... The nematode Caenorhabditis elegans is one of the key model systems in biology, including possessing the first fully assembled animal genome. Whereas C. elegans is a self-reproducing hermaphrodite with fairly limited within-population variation, its relative C. remanei is an outcrossing species with much more extensive genetic variation, making it an ideal parallel model system for evolutionary genetic investigations. Here, we greatly improve on previous assemblies by generating a chromosome-level assembly of the entire C. remanei genome (124.8 Mb of total size) using long-read sequencing and chromatin conformation capture data. Like other fully assembled genomes in the genus, we find that the C. remanei genome displays a high degree of synteny with C. elegans despite multiple within-chromosome rearrangements. Both genomes have high gene density in central regions of chromosomes relative to chromosome ends and the opposite pattern for the accumulation of repetitive elements. C. elegans and C. remanei also show similar patterns of interchromosome interactions, with the central regions of chromosomes appearing to interact with one another more than the distal ends. The new C. remanei genome presented here greatly augments the use of the Caenorhabditis as a platform for comparative genomics and serves as a basis for molecular population genetics within this highly diverse species.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3