Affiliation:
1. Department of Biology, Indiana University, Bloomington, Indiana 47405
Abstract
Abstract
Regulation of epidermal growth factor receptor (EGFR) signaling requires the concerted action of both positive and negative factors. While the existence of numerous molecules that stimulate EGFR activity has been well documented, direct biological inhibitors appear to be more limited in number and phylogenetic distribution. Kekkon1 (Kek1) represents one such inhibitor. Kek1 was initially identified in Drosophila melanogaster and appears to be absent from vertebrates and the invertebrate Caenorhabditis. To further investigate Kek1's function and evolution, we identified kek1 orthologs within dipterans. In D. melanogaster, kek1 is a transcriptional target of EGFR signaling during oogenesis, where it acts to attenuate receptor activity through an inhibitory feedback loop. The extracellular and transmembrane portion of Kek1 is sufficient for its inhibitory activity in D. melanogaster. Consistent with conservation of its role in EGFR signaling, interspecies comparisons indicate a high degree of identity throughout these regions. During formation of the dorsal-ventral axis Kek1 is expressed in dorsal follicle cells in a pattern that reflects the profile of receptor activation. D. virilis Kek1 (DvKek1) is also expressed dynamically in the dorsal follicle cells, supporting a conserved role in EGFR signaling. Confirming this, biochemical and transgenic assays indicate that DvKek1 is functionally interchangeable with DmKek1. Strikingly, we find that the cytoplasmic domain contains a region with the highest degree of conservation, which we have implicated in EGFR inhibition and dubbed the Kek tail (KT) box.
Publisher
Oxford University Press (OUP)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献