Accelerated Mitochondrial Evolution and “Darwin's Corollary”: Asymmetric Viability of Reciprocal F1 Hybrids in Centrarchid Fishes

Author:

Bolnick Daniel I1,Turelli Michael2,López-Fernández Hernán3,Wainwright Peter C2,Near Thomas J4

Affiliation:

1. Section of Integrative Biology, University of Texas, Austin, Texas 78712

2. Section of Evolution and Ecology, University of California, Davis, California 95616

3. Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas 77843-2258 and

4. Department of Ecology and Evolution and Peabody Museum of Natural History, Yale University, New Haven, Connecticut 06520

Abstract

Abstract Reciprocal crosses between species can yield hybrids with different viabilities. The high frequency of this asymmetric hybrid viability (“Darwin's corollary”) places it alongside Haldane's rule and the “large-X effect” as a general feature of postmating reproductive isolation. Recent theory suggests that reciprocal cross asymmetries can arise from stochastic substitutions in uniparentally inherited loci such as mitochondrial genomes, although large systematic differences in mitochondrial substitution rates can also contribute to asymmetries. Although the magnitude of asymmetry will be relatively insensitive to unequal rates of mitochondrial evolution in diverging species, we show here that rate asymmetries can have a large effect on the direction of viability asymmetries. In reciprocal crosses between species, the maternal parent with faster mitochondrial evolution will tend to produce less viable F1 hybrids owing to an increased probability of mito-nuclear incompatibilities. We test this prediction using data on reciprocal hybrid viability and molecular evolution rates from a clade of freshwater fishes, Centrarchidae. As predicted, species with accelerated mitochondrial evolution tend to be the worse maternal parent for F1 hybrids, providing the first comparative evidence for a systematic basis to Darwin's corollary. This result is consistent with the hypothesis that mito-nuclear incompatibilities can play an important role in reproductive isolation. Such asymmetrical reproductive isolation may help explain the asymmetrical mitochondrial introgression observed between many hybridizing species. However, as with any comparative study, we cannot rule out the possibility that our results arise from a mutual correlation with a third variable such as body size.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3