Affiliation:
1. Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
Abstract
Abstract
Although very closely related species can differ in their fine-scale patterns of recombination hotspots, variation in the average genomic recombination rate among recently diverged taxa has rarely been surveyed. We measured recombination rates in eight species that collectively represent several temporal scales of divergence within a single rodent family, Muridae. We used a cytological approach that enables in situ visualization of crossovers at meiosis to quantify recombination rates in multiple males from each rodent group. We uncovered large differences in genomic recombination rate between rodent species, which were independent of karyotypic variation. The divergence in genomic recombination rate that we document is not proportional to DNA sequence divergence, suggesting that recombination has evolved at variable rates along the murid phylogeny. Additionally, we document significant variation in genomic recombination rate both within and between subspecies of house mice. Recombination rates estimated in F1 hybrids reveal evidence for sex-linked loci contributing to the evolution of recombination in house mice. Our results provide one of the first detailed portraits of genomic-scale recombination rate variation within a single mammalian family and demonstrate that the low recombination rates in laboratory mice and rats reflect a more general reduction in recombination rate across murid rodents.
Publisher
Oxford University Press (OUP)
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献