Affiliation:
1. Department of Biology, University of Virginia, Charlottesville, Virginia 22903
2. Department of Biology, Indiana University, Bloomington, Indiana 47405
Abstract
Abstract
It is usually posited that the most important factors contributing to sex chromosome evolution in diploids are the suppression of meiotic recombination and the asymmetry that results from one chromosome (the Y) being permanently heterozygous and the other (the X) being homozygous in half of the individuals involved in mating. To distinguish between the roles of these two factors, it would be valuable to compare sex chromosomes in diploid-mating organisms and organisms where mating compatibility is determined in the haploid stage. In this latter group, no such asymmetry occurs because the sex chromosomes are equally heterozygous. Here we show in the fungus Microbotryum violaceum that the chromosomes carrying the mating-type locus, and thus determining haploid-mating compatibility, are rich in transposable elements, dimorphic in size, and carry unequal densities of functional genes. Through analysis of available complete genomes, we also show that M. violaceum is, remarkably, more similar to humans and mice than to yeast, nematodes, or fruit flies with regard to the differential accumulation of transposable elements in the chromosomes determining mating compatibility vs. the autosomes. We conclude that restricted recombination, rather than asymmetrical sheltering, hemizygosity, or dosage compensation, is sufficient to account for the common sex chromosome characteristics.
Publisher
Oxford University Press (OUP)
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献