Meiotic Chromosome Synapsis in Yeast Can Occur Without Spo11-Induced DNA Double-Strand Breaks

Author:

Bhuiyan Hasanuzzaman1,Schmekel Karin1

Affiliation:

1. Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden

Abstract

Abstract Proper chromosome segregation and formation of viable gametes depend on synapsis and recombination between homologous chromosomes during meiosis. Previous reports have shown that the synaptic structures, the synaptonemal complexes (SCs), do not occur in yeast cells with the SPO11 gene removed. The Spo11 enzyme makes double-strand breaks (DSBs) in the DNA and thereby initiates recombination. The view has thus developed that synapsis in yeast strictly depends on the initiation of recombination. Synapsis in some other species (Drosophila melanogaster and Caenorhabditis elegans) is independent of recombination events, and SCs are found in spo11 mutants. This difference between species led us to reexamine spo11 deletion mutants of yeast. Using antibodies against Zip1, a SC component, we found that a small fraction (1%) of the spo11 null mutant cells can indeed form wild-type-like SCs. We further looked for synapsis in a spo11 mutant strain that accumulates pachytene cells (spo11Δ ndt80Δ), and found that the frequency of cells with apparently complete SC formation was 10%. Other phenotypic criteria, such as spore viability and homologous chromosome juxtaposition measured by FISH labeling of chromosomal markers, agree with several previous reports of the spo11 mutant. Our results demonstrate that although the Spo11-induced DSBs obviously promote synapsis in yeast, the presence of Spo11 is not an absolute requirement for synapsis.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3