A Drosophila Gain-of-Function Screen for Candidate Genes Involved in Steroid-Dependent Neuroendocrine Cell Remodeling

Author:

Zhao Tao1,Gu Tingting1,Rice Heather C1,McAdams Kathleen L1,Roark Kimberly M1,Lawson Kaylan1,Gauthier Sebastien A1,Reagan Kathleen L1,Hewes Randall S12

Affiliation:

1. Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019 and

2. Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104

Abstract

Abstract The normal functioning of neuroendocrine systems requires that many neuropeptidergic cells change, to alter transmitter identity and concentration, electrical properties, and cellular morphology in response to hormonal cues. During insect metamorphosis, a pulse of circulating steroids, ecdysteroids, governs the dramatic remodeling of larval neurons to serve adult-specific functions. To identify molecular mechanisms underlying metamorphic remodeling, we conducted a neuropeptidergic cell-targeted, gain-of-function genetic screen. We screened 6097 lines. Each line permitted Gal4-regulated transcription of flanking genes. A total of 58 lines, representing 51 loci, showed defects in neuropeptide-mediated developmental transitions (ecdysis or wing expansion) when crossed to the panneuropeptidergic Gal4 driver, 386Y-Gal4. In a secondary screen, we found 29 loci that produced wing expansion defects when crossed to a crustacean cardioactive peptide (CCAP)/bursicon neuron-specific Gal4 driver. At least 14 loci disrupted the formation or maintenance of adult-specific CCAP/bursicon cell projections during metamorphosis. These include components of the insulin and epidermal growth factor signaling pathways, an ecdysteroid-response gene, cabut, and an ubiquitin-specific protease gene, fat facets, with known functions in neuronal development. Several additional genes, including three micro-RNA loci and two factors related to signaling by Myb-like proto-oncogenes, have not previously been implicated in steroid signaling or neuronal remodeling.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3