Sustained and Rapid Chromosome Movements Are Critical for Chromosome Pairing and Meiotic Progression in Budding Yeast

Author:

Brown Megan Sonntag1,Zanders Sarah,Alani Eric1

Affiliation:

1. Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853

Abstract

Abstract Telomere-led chromosome movements are a conserved feature of meiosis I (MI) prophase. Several roles have been proposed for such chromosome motion, including promoting homolog pairing and removing inappropriate chromosomal interactions. Here, we provide evidence in budding yeast that rapid chromosome movements affect homolog pairing and recombination. We found that csm4Δ strains, which are defective for telomere-led chromosome movements, show defects in homolog pairing as measured in a “one-dot/two-dot tetR-GFP” assay; however, pairing in csm4Δ eventually reaches near wild-type (WT) levels. Charged-to-alanine scanning mutagenesis of CSM4 yielded one allele, csm4-3, that confers a csm4Δ-like delay in meiotic prophase but promotes high spore viability. The meiotic delay in csm4-3 strains is essential for spore viability because a null mutation (rad17Δ) in the Rad17 checkpoint protein suppresses the delay but confers a severe spore viability defect. csm4-3 mutants show a general defect in chromosome motion but an intermediate defect in chromosome pairing. Chromosome velocity analysis in live cells showed that while average chromosome velocity was strongly reduced in csm4-3, chromosomes in this mutant displayed occasional rapid movements. Lastly, we observed that spo11 mutants displaying lower levels of meiosis-induced double-strand breaks showed higher spore viability in the presence of the csm4-3 mutation compared to csm4Δ. On the basis of these observations, we propose that during meiotic prophase the presence of occasional fast moving chromosomes over an extended period of time is sufficient to promote WT levels of recombination and high spore viability; however, sustained and rapid chromosome movements are required to prevent a checkpoint response and promote efficient meiotic progression.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3