Evolution and Expression of Homeologous Loci in Tragopogon miscellus (Asteraceae), a Recent and Reciprocally Formed Allopolyploid

Author:

Tate Jennifer A1,Ni Zhongfu2,Scheen Anne-Cathrine3,Koh Jin1,Gilbert Candace A1,Lefkowitz David1,Chen Z Jeffrey2,Soltis Pamela S4,Soltis Douglas E1

Affiliation:

1. Department of Botany, University of Florida, Gainesville, Florida 32611

2. Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712

3. Natural History Museum, University of Oslo, N-0318 Oslo, Norway and

4. Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611

Abstract

Abstract On both recent and ancient time scales, polyploidy (genome doubling) has been a significant evolutionary force in plants. Here, we examined multiple individuals from reciprocally formed populations of Tragopogon miscellus, an allotetraploid that formed repeatedly within the last 80 years from the diploids T. dubius and T. pratensis. Using cDNA–AFLPs followed by genomic and cDNA cleaved amplified polymorphic sequence (CAPS) analyses, we found differences in the evolution and expression of homeologous loci in T. miscellus. Fragment variation within T. miscellus, possibly attributable to reciprocal formation, comprised 0.6% of the cDNA–AFLP bands. Genomic and cDNA CAPS analyses of 10 candidate genes revealed that only one “transcript-derived fragment” (TDF44) showed differential expression of parental homeologs in T. miscellus; the T. pratensis homeolog was preferentially expressed by most polyploids in both populations. Most of the cDNA–AFLP polymorphisms apparently resulted from loss of parental fragments in the polyploids. Importantly, changes at the genomic level have occurred stochastically among individuals within the independently formed populations. Synthetic F1 hybrids between putative diploid progenitors are additive of their parental genomes, suggesting that polyploidization rather than hybridization induces genomic changes in Tragopogon.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3