Integration of Cytogenetic and Genetic Linkage Maps Unveils the Physical Architecture of Tomato Chromosome 2

Author:

Koo Dal-Hoe12,Jo Sung-Hwan13,Bang Jae-Wook4,Park Hye-Mi5,Lee Sanghyeob16,Choi Doil15

Affiliation:

1. Plant Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-600, Korea

2. Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706 and

3. Department of Functional Genomics, University of Science and Technology, Daejeon, 305-333, Korea

4. School of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea

5. Department of Plant Sciences, College of Agricultural and Life Sciences, Seoul National University, Seoul, 151-742, Korea

6. Dongbu Advanced Research Institute, Dongbu Hitek, Daejeon, 305-708, Korea

Abstract

Abstract We report the integration of the linkage map of tomato chromosome 2 with a high-density bacterial artificial chromosome fluorescence in situ hybridization (BAC–FISH)-based cytogenetic map. The euchromatic block of chromosome 2 resides between 13 and 142 cM and has a physical length of 48.12 μm, with 1 μm equivalent to 540 kb. BAC–FISH resolved a pair of loci that were 3.7–3.9 Mb apart and were not resolved on the linkage map. Most of the regions had crossover densities close to the mean of ∼200 kb/cM. Relatively hot and cold spots of recombination were unevenly distributed along the chromosome. The distribution of centimorgan/micrometer values was similar to the previously reported recombination nodule distribution along the pachytene chromosome. FISH-based physical maps will play an important role in advanced genomics research for tomato, including map-based cloning of agronomically important traits and whole-genome sequencing.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3