Quantitative Trait Loci (QTL) Analysis For Rice Grain Width and Fine Mapping of an Identified QTL Allele gw-5 in a Recombination Hotspot Region on Chromosome 5

Author:

Wan Xiangyuan12,Weng Jianfeng1,Zhai Huqu2,Wang Jiankang2,Lei Cailin2,Liu Xiaolu2,Guo Tao1,Jiang Ling1,Su Ning2,Wan Jianmin12

Affiliation:

1. National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China and

2. Institute of Crop Science and the National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

Abstract Rice grain width and shape play a crucial role in determining grain quality and yield. The genetic basis of rice grain width was dissected into six additive quantitative trait loci (QTL) and 11 pairs of epistatic QTL using an F7 recombinant inbred line (RIL) population derived from a single cross between Asominori (japonica) and IR24 (indica). QTL by environment interactions were evaluated in four environments. Chromosome segment substitution lines (CSSLs) harboring the six additive effect QTL were used to evaluate gene action across eight environments. A major, stable QTL, qGW-5, consistently decreased rice grain width in both the Asominori/IR24 RIL and CSSL populations with the genetic background Asominori. By investigating the distorted segregation of phenotypic values of rice grain width and genotypes of molecular markers in BC4F2 and BC4F3 populations, qGW-5 was dissected into a single recessive gene, gw-5, which controlled both grain width and length–width ratio. gw-5 was narrowed down to a 49.7-kb genomic region with high recombination frequencies on chromosome 5 using 6781 BC4F2 individuals and 10 newly developed simple sequence repeat markers. Our results provide a basis for map-based cloning of the gw-5 gene and for marker-aided gene/QTL pyramiding in rice quality breeding.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3