An Epistasis Analysis of recA and recN in Escherichia coli K-12

Author:

Klimova Anastasiia N1,Sandler Steven J12

Affiliation:

1. Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts 01003

2. Department of Microbiology, University of Massachusetts Amherst, Massachusetts 01003

Abstract

Abstract RecA is essential for double-strand-break repair (DSBR) and the SOS response in Escherichia coli K-12. RecN is an SOS protein and a member of the Structural Maintenance of Chromosomes family of proteins thought to play a role in sister chromatid cohesion/interactions during DSBR. Previous studies have shown that a plasmid-encoded recA4190 (Q300R) mutant had a phenotype similar to ∆recN (mitomycin C sensitive and UV resistant). It was hypothesized that RecN and RecA physically interact, and that recA4190 specifically eliminated this interaction. To test this model, an epistasis analysis between recA4190 and ∆recN was performed in wild-type and recBC sbcBC cells. To do this, recA4190 was first transferred to the chromosome. As single mutants, recA4190 and ∆recN were Rec+ as measured by transductional recombination, but were 3-fold and 10-fold decreased in their ability to do I-SceI-induced DSBR, respectively. In both cases, the double mutant had an additive phenotype relative to either single mutant. In the recBC sbcBC background, recA4190 and ∆recN cells were very UVS (sensitive), Rec−, had high basal levels of SOS expression and an altered distribution of RecA-GFP structures. In all cases, the double mutant had additive phenotypes. These data suggest that recA4190 (Q300R) and ∆recN remove functions in genetically distinct pathways important for DNA repair, and that RecA Q300 was not important for an interaction between RecN and RecA in vivo. recA4190 (Q300R) revealed modest phenotypes in a wild-type background and dramatic phenotypes in a recBC sbcBC strain, reflecting greater stringency of RecA’s role in that background.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3