Pathogen Genetic Control of Transcriptome Variation in the Arabidopsis thaliana – Botrytis cinerea Pathosystem

Author:

Soltis Nicole E12,Caseys Celine1,Zhang Wei3,Corwin Jason A4,Atwell Susanna2,Kliebenstein Daniel J125

Affiliation:

1. Department of Plant Sciences, University of California, Davis, California 95616

2. Plant Biology Graduate Group, University of California, Davis, California 95616

3. Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506

4. Department of Ecology and Evolution Biology, University of Colorado, Boulder, Colorado 80309-0334

5. DynaMo Center of Excellence, University of Copenhagen, DK-1871, Frederiksberg C, Denmark

Abstract

Abstract Disease arises from the interaction of two genomes, host and pathogen genomes. To highlight these genomic interactions, Soltis et al. performed genome-wide association (GWA) based on genetic variation in the pathogen... In plant–pathogen relations, disease symptoms arise from the interaction of the host and pathogen genomes. Host–pathogen functional gene interactions are well described, whereas little is known about how the pathogen genetic variation modulates both organisms’ transcriptomes. To model and generate hypotheses on a generalist pathogen control of gene expression regulation, we used the Arabidopsis thaliana–Botrytis cinerea pathosystem and the genetic diversity of a collection of 96 B. cinerea isolates. We performed expression-based genome-wide association (eGWA) for each of 23,947 measurable transcripts in Arabidopsis (host), and 9267 measurable transcripts in B. cinerea (pathogen). Unlike other eGWA studies, we detected a relative absence of locally acting expression quantitative trait loci (cis-eQTL), partly caused by structural variants and allelic heterogeneity hindering their identification. This study identified several distantly acting trans-eQTL linked to eQTL hotspots dispersed across Botrytis genome that altered only Botrytis transcripts, only Arabidopsis transcripts, or transcripts from both species. Gene membership in the trans-eQTL hotspots suggests links between gene expression regulation and both known and novel virulence mechanisms in this pathosystem. Genes annotated to these hotspots provide potential targets for blocking manipulation of the host response by this ubiquitous generalist necrotrophic pathogen.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3